Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data

نویسندگان

  • Takashi Nozoe
  • Edo Kussell
  • Yuichi Wakamoto
چکیده

Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells' response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to infer relative fitness from a sample of genomic sequences.

Mounting evidence suggests that natural populations can harbor extensive fitness diversity with numerous genomic loci under selection. It is also known that genealogical trees for populations under selection are quantifiably different from those expected under neutral evolution and described statistically by Kingman's coalescent. While differences in the statistical structure of genealogies hav...

متن کامل

Generalization of the Ewens sampling formula to arbitrary fitness landscapes

In considering evolution of transcribed regions, regulatory sequences, and other genomic loci, we are often faced with a situation in which the number of allelic states greatly exceeds the size of the population. In this limit, the population eventually adopts a steady state characterized by mutation-selection-drift balance. Although new alleles continue to be explored through mutation, the sta...

متن کامل

Inferring epigenetic dynamics from kin correlations.

Populations of isogenic embryonic stem cells or clonal bacteria often exhibit extensive phenotypic heterogeneity that arises from intrinsic stochastic dynamics of cells. The phenotypic state of a cell can be transmitted epigenetically in cell division, leading to correlations in the states of cells related by descent. The extent of these correlations is determined by the rates of transitions be...

متن کامل

Epistasis and the Structure of Fitness Landscapes: Are Experimental Fitness Landscapes Compatible with Fisher’s Geometric Model?

The fitness landscape defines the relationship between genotypes and fitness in a given environment and underlies fundamental quantities such as the distribution of selection coefficient and the magnitude and type of epistasis. A better understanding of variation in landscape structure across species and environments is thus necessary to understand and predict how populations will adapt. An inc...

متن کامل

Genotypic Complexity of Fisher's Geometric Model.

Fisher's geometric model was originally introduced to argue that complex adaptations must occur in small steps because of pleiotropic constraints. When supplemented with the assumption of additivity of mutational effects on phenotypic traits, it provides a simple mechanism for the emergence of genotypic epistasis from the nonlinear mapping of phenotypes to fitness. Of particular interest is the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017